Soal :
1. Buatlah Aljabar pemrograman perkalian pada matriks ?
2. Buatlah Aljabar pemrograman transpose pada matriks ?
3. Buatlah Aljabar pemrograman determinan pada matriks ?
Jawaban :
uses crt;
type t = object
m1, m2 : array [1..2,1..2] of integer;
lok : array [1..4] of integer;
procedure input;
procedure tampil;
procedure kali;
procedure transpose;
procedure determinan;
end;
var m: t;
i,j,k,det,det2,pil : integer;
procedure t.input;
begin
clrscr;
writeln ('input matrix I');
for i:= 1 to 2 do
begin
for j:= 1 to 2 do
begin
write('elemen matrix [',i,',',j,']: ');
readln (m1[i,j]);
end;
end;
gotoxy (35,1); writeln('inputan matrix II');
k:=2;
for i:=1 to 2 do
begin
for j:=1 to 2 do
begin
gotoxy (35,k);
inc (k);
write('elemen matrix [',i,',',j,']: ');
readln(m2[i,j]);
end;
end;
end;
procedure t.tampil;
begin
writeln;
writeln ('matrix I ');
writeln (m1[1,1]:5,m1[1,2]:5);
writeln (m1[2,1]:5,m1[2,2]:5);
gotoxy (35,7); writeln ('matrix II');
gotoxy (35,8); writeln (m2[1,1]:5,m2[1,2]:5);
gotoxy (35,9); writeln (m2[2,1]:5,m2[2,2]:5);
readln;
end;
procedure t.kali;
begin
gotoxy (23,11);writeln('hasil perkalian matrix');
lok[1] := ((m1[1,1] * m2[1,1])+(m1[1,2] * m2[2,1]));
lok[2] := ((m1[1,1] * m2[1,2])+(m1[1,2] * m2[2,2]));
lok[3] := ((m1[2,1] * m2[1,1])+(m1[2,1] * m2[2,1]));
lok[4] := ((m1[2,1] * m2[1,2])+(m1[2,1] * m2[2,2]));
gotoxy(30,12); writeln(lok[1]:5,lok[2]:5);
gotoxy(30,13); writeln(lok[3]:5,lok[4]:5);
readln;
end;
procedure t.transpose;
begin
clrscr;
writeln;
writeln ('matrix I ');
writeln (m1[1,1]:5,m1[1,2]:5);
writeln (m1[2,1]:5,m1[2,2]:5);
gotoxy (35,2); writeln ('matrix II');
gotoxy (35,3); writeln (m2[1,1]:5,m2[1,2]:5);
gotoxy (35,4); writeln (m2[2,1]:5,m2[2,2]:5);
writeln;
writeln ('Transpose matrix I');
for i:= 1 to 2 do
begin
for j:= 1 to 2 do
begin
write(m1[j,i]:5);
end;
writeln;
end;
gotoxy (35,6); writeln('Transpose matrix II');
k:=7;
for i:=1 to 2 do
begin
gotoxy (35,k);
for j:=1 to 2 do
begin
write(m2[j,i]:5);
end;
inc (k);
end;
readln;
end;
procedure t.determinan;
begin
clrscr;
writeln;
writeln ('matrix I ');
writeln (m1[1,1]:5,m1[1,2]:5);
writeln (m1[2,1]:5,m1[2,2]:5);
gotoxy (35,2); writeln ('matrix II');
gotoxy (35,3); writeln (m2[1,1]:5,m1[1,2]:5);
gotoxy (35,4); writeln (m2[2,1]:5,m2[2,2]:5);
det := (m1[1,1]*m1[2,2])-(m1[2,1]*m1[1,2]);
det2 := (m2[1,1]*m2[2,2])-(m2[2,1]*m2[1,2]);
writeln;
writeln ('Determinan Matrix I = ',det);
gotoxy (35,6); writeln ('Determinan Matrix II = ',det2);
readln;
end;
begin
repeat
clrscr;
gotoxy (25,1); writeln ('<<<<< menu matrix >>>>>');
gotoxy (25,2); writeln ('1. input matrix 1');
gotoxy (25,3); writeln ('2. perkalian matrix');
gotoxy (25,4); writeln ('3. transpose matrix');
gotoxy (25,5); writeln ('4. determinan matrix');
gotoxy (25,6); writeln ('5. keluar');
gotoxy (25,7); writeln (' ===============================');
gotoxy (25,8); write ('pilihan [1..5] : '); readln(pil);
case pil of
1: begin
m.input;
m.tampil;
end;
2: m.kali;
3: m.transpose;
4: m.determinan;
end;
until pil=5;
end.
Output :
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar